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75% of power outages are either:
- directly caused by weather-inflicted faults, or
- indirectly by failures of equipment, caused partially by weather exposure

The number and frequency of power outages has dramatically increased due to recent weather trends
[Trapp, PNAS 20Q Diffenbaugh, PNASR013, resulting in:

huge economic, social, and environmental risks to
power systems and its customers

Most studies perform post-mortem analysis of outage restoration after outage occurrence
- A recent study of ours focused on proactive outage detection [Dokic, HICSS 2019

Restoration after different types of outages requires different resources to be allocated
- Hence the critical nature of predicting outage causes
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Motivation

 Challenges:

1) Leveraging spatial information

2) Avoiding to heavily rely on the overall network structure

e Relevant local substructures may not be captured!

3) Potential instability of the predictive models

* Objective:

A pro-active approach to maintenance and operation of power system infrastructure upon evolving
weather events based on outage cause prediction
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Weather forecast: extracted for every 1-3 hours

Spatiotemporal correlation
- spatial: captured by coupling substations in a spatial distance network
- temporal: #days between measurements, hour of day when measurements were performed (along with the season that day falls in)
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Experimental Evaluation

Baselines Model 1
. g - U p = vote(Qizq 1)
Logistic Regression | Model 2 1 (2i=1
» Spatially-Aware Logistic Regression X Sampling H2
* Sampling-based ensembles 7

Model n

o MoE: Mixture of Local Experts

A sampling-based ensemble scheme.

Experimental Setup ~ Gating T
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 Importance of spatial information

- Training: from 1999 to i 1 0LY@OA009/2014/2016)
- Testing: from i 1 GS@G2D09/2014/2016) to 2018 | Expert 1
- Task: predict the output cause for each

measurement-substation pair < 1 Expert 2

* Parameter analysis L
- # of base components: plth8 hp 1
- sampling methods: bootstrap, subsampling " Expert

- sampling fractions: T, g I | A mixture-of-experts architecture.




Experimental Results

Model Overall Acc. | Acc. Precision | Recall | AUC F1
LogReg 0.7258 0.8590 0.4048 0.4503 | 0.3287 | 0.4073
LogReg (spatial) 0.7576 0.8788 0.4186 0.4515 | 0.3568 | 0.4217
Testing performance for a prediction horizon of 10 years.
Model Overall Acc. | Acc. Precision | Recall | AUC F1
LogReg 0.7982 0.8791 0.4045 0.4113 | 0.3364 | 0.4074
LogReg (spatial) 0.8497 0.8544 0.4331 0.4504 | 0.3669 | 0.4394
Testing performance for a prediction horizon of 5 years.
Model Overall Acc. | Acc. Precision | Recall | AUC F1
LogReg 0.8313 0.8907 0.4629 0.4866 | 0.6706 | 0.4636
LogReg (spatial) 0.8734 0.9068 0.4821 0.5073 | 0.7510 | 0.4833

Testing performance for a prediction horizon of 3 years.

 LogReg (spatial) obtains greater classification performance compared to LogReg

e ~5-6% decrease in overall accuracy across all three horizons

e supports the hypothesis that spatial information is truly relevant for this task




Test accuracy

Overall (macro) testing accuracy under different parameters and prediction horizons
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» Most of the ensemble variants outperform a single LogReg model for almost all of the parameter settings and generally
achieve greater performance as the #components increases

» The models seem more stable when they are predicting over a horizon of 3 or 5 years, rather than 10 years

* MoE generally outperforms the baselines
e in all three cases, there exists a parameter setting for which MoE obtains the highest overall accuracy

* MoE seems to fluctuate in the 10-year case, but gradually stabilize as the horizon shortens

Further research g Investigate the models' performance variability across different seasons



